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The ~~~~~~~~~~~~~~~~~~~~~ prO~perties of a rotating, charge—neutralized

P—layer are investigated within the framework of a hybrid (Vlasov—fluid)

model in which the layer ions are described by the Vlasov equation, and the

layer electrons and the uniform background plasma are described as macroscopic ,

cold fluids. It is assumed that the P—layer is thin, with radial thickness

(2a) much smaller than the mean radius (R ) ,  and that ~~
‘<< 1, where V is

0~
Budker’s parameter for the layer ions. Electrostatic stability properties are

calculated for perturbations about a weakly diamagnetic P—layer with rectangular

density profile -~described by the equilibrium distribution function

where H is the energy , P0 is

the canonical angular momentui~i , P is the axial canonical momentum , and

R0, V~ , V0, and P0 are constants. ~The stability analysis is carried out

including the effects of a uniform background plasma , and weak self magnetic

fields. Although a slow rotational P—layer (P >0) is found to be stable ,
9- - ~~~th

it is shown that a fast rotational P—layer (P0 < 0) is unstable for sufficiently

high background plasma density 
Z
(w 2>>~~~~. The typical instability growth

rate is a substantial fraction of the Ion cyclotron frequency.ç . ~1’ ~~
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I.  INTROD UCTION

The generation ’6  and applicat io n 7 9  of intense ion beams has been

the subject of several recent investigations . One application of con—

siderable interest is the formation of field—reversed ion layers and rings,
7 9

which can provide the magnetic conf inement geometry fo r fus ion p lasmas .

Such layers and rings are likely subject to various macro— and micro—

instabilities)~
0
~~

6 For example , the low f requency s tabi l i ty  propert ies

of an ion layer immersed in a background plasma have recentl y

been investigated wit hin the framewo rk of a kinetic energy princip le that

incorporates the effects of large Ion orbits.11 In the present analysis,

allowing f or perturba t iof ls  of mode rate frequency (~~~ j .) ,  we examine

the equi librium and negative— 1nass 12
~~

5 stability properties of a weakly

diamagnetic , cha rge—neutralized proton layer (P—layer) within the

f r amewo rk of a hybrid (Vlasov—fluid ) model . The layer electrons and

background p lasma electrons and ions are described as macroscop ic ,

cold f l uids immersed in a uniform axial magnetic f ield B~~ 5 . However , to

corr ectly include the influence of layer ion dynamics on stability behavior ,

we adopt a ful ly kinetic model in which the layer ions are described

by the Vlasov equation .

The p resent analysis is carried out for  an infinitely long P—laye r

aligned pa rallel to a u n i f o rm mag netic f ie ld ~~~~ 
(Fig . 1). The P—layer

is immersed in a unifo rm , cy lind r ical background plasma and is charge n eu—

tralized by extra electrons . We assume that the layer is thin [Eq. (1)1,

i.e., the radial thickness (2a) of the layer is small in comparison

with the mean radius R
0
. It is also assumed that ‘~,<< l, where v is

Budker~s parameter for the layer ions. Although the equilibrium self

~~ O~ 2 032



3

magnetic field B~0(r)~ 0+B~~(r)~ is weak in absolute intensity for v<<l ,

the self—field gradients can be sufficiently large to have an important

influence on particle trajectories, and hence on stability behavior.

Equilibrium and stability properties are calculated for the specific

choice of ion layer distribution function [Eq. (10)1,

f
~
(H,P

~
,P9) ~~ 

6(R_V ~P — 

~~ 
(v~

_v
~)) 6(P0—P0)

where H is the energy, P8 is the canonical angular momentum, P is the

axial canonical momentum, and n,~, R0, V~ , V0, and P0 are constants.

Equilibrium properties are examined in Sec. II. One of the important

features of the equilibrium analysis is that the equilibrium distribution

function in Eq. (10) corresponds to a sharp—boundary density profile

(Eq. (29)]. It is also found that the radial betatron frequency of the

2 221/2layer ions is given by w .
~~~ i~~b

8 ~ 
, where W

ci is the ion cyclotron

frequency, W
b 
is the ion layer plasma frequency , and 8 is the ratio

of the mean ion layer speed to the speed of light .

The electrostatic stability properties of the layer—p lasma configuration

are investigated in Sees. III and IV , including the important influence of:

(a) equilibrium self magnetic fields, (b) an outer cylindrical conductor

(Fig. 1), and (c) ion layer kinetic effects. The analysis is carried out

within the framework of the linearized Vlasov—fluid and Poisson equations,

assuming that perturbed quantities are independent of axial coordinate

(a/~z—O). Moreover, in Sec. IV, stability properties are investigated for

eigenfrequencies near multiples of the mean P—layer rotational frequency ,

i.e., tw—Lw 8I cCu~~, 
where w is the complex eigenfrequency , £ is the

azimuthal harmonic number and is the mean rotational frequency of the

P—layer . Although a slow rotational equilibrium (P
0
>O) is stable [see

discussion following Eq. (55)], it is shown in Sec. IV that a fast rotational
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equilibrium (P0<O) is unstable for sufficiently high background plasma

density (u~>>w~~). The physical mechanism for instability is similar to that

for the negative—mass instability,12~~
5 

including the dielectric

effects of the background plasma . Introducing the dimensionless parameters

• [Eq. (60)]

2
2 flb W ej 2 2  2y~ (i —1) ‘

~~ b~ 
/‘W ci~P ti)

where nb and n are the layer density and plasma density , respectively,

• we find that [E qs. (62) and (63) ]

y<l , and (l+q)y 2— ( 3 q/2+ l)y+q> O

are necessary and suff ic ient  conditions for instabili ty . The instabili ty

condition in Eq. (62) is valid only when the pa rameter nb /n is suf f ic ien t ly

small (%/n << 1). Moreover , the system is most unstable when [Eq. (65)]

2—1)

which corresponds to y l .  Evidently,  the mean motion of the ion layer

(8 2) ,  the background p lasma (n~ )~ and equilibrium self field effects  (q) ,

all have an important influence on stability behavior (Sec. IV).

Numerical investigations of the stability properties are carried out

in Sec. IV. Several points are noteworthy in this regard . First , the in-

stability growth rate increases when the self—field strength (as measured

by q) is increased . Moreover , the system is stabilized as q approaches zero.

Second, the maximum growth rate can be a substantial fraction of the ion

cyclotron frequency . Third , the number of unstable modes increase rapidly

as q increajes. Fourth, the range of nb/n corresponding to instability

is rapidly reduced when the azimuthal harmonic number £ is increased above

£=2. [The fundamental mode (R.=l) is found to be stable.]



TI . THEORETICAL NODEL AND EQUILIBRIuM PROPERTIES

A. Theoretical Model

As illu strat ed in Fig. 1, the equilibrium configuration consists

of ’ a nonrelativistic P—layer that is infinite iii axial, extent and aligned

paral lel to a unilorm arI~I ied magnetic f i e l d  B~~~~. The P—layer  is immersed

in a uniform , cvliii drical background plasRta (with nuter radius R), and is

charge neutralized 1w extra electrons with d e n s i ty  p r o f i l e  i d e n t i c a l

to the layer ions. The mean radius and radial thickness of the P—1aver are

denoted by R
0 

and ~~i, respectivel y. The radius of the cy lindrical conducting

wall is denoted by R .  The mean motion or the P—layer is in the azimuthal

and axial  d i r ec t ions , and the app lied magnetic field provides radial confine-

ment of the layer ions . For s impl i c i ty ,  we assum e that  the  plasma and l aye r

ions are sing ly charged . As shown in Fig. 1, cyl indr ical  polar  coordinates

(r . ~ , z)  are j n t rodu c . -d , and the following are the main assumptions p e r t a i n i n g

to the equilibrium conf iguration:

(a) Equi l ibr ium propertie s are independent of z (a /az=0) and azimuthally

symmetric (~ /~0=0) about the z—axis.

(b) The radial thickness of the P—layer is much smailer than its major

radius, i.e.,

a <.~~R0 . (1)

(~ ) It is f u r t h e r  assumed tha t

2 2
~~

=N b e /m~ c << 1 (2~

2 2where \=N b
e /tn 1

c is Budker s parameter ,

R
I c  0dr r n

b (r) (3)
J o

is the number of lay er  lens per u n i t  ax ia l  l eng th  of the P — l a y e r , n~~(r )

- -1
• -~~~~~~~~~~~~~~~~~~~~
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is the layer ion density, c is the speed of light in vacuo, and e and

are charge and mass, respectively, of a layer ion. The inequality in Eq.

(2) imp lies that  the intensity of the self magnet ic  f i e ld  is much 1ess than

the applied field B
0 (i.e., AB 0/B0

.z<l). However , the self—field grad ients

• over the narrow radial dimension of the layer can be sufficiently strong

to have a large influence on the layer ion trajectories , and hence on

stability behavior (Sec. lILA).

In the present analysis, the layer electrons and

background plasma are t reated as cold (T .-’~0) f lu ids  immersed in a uniform

axial magnetic field B~~~~. Here , j=e ’, e , and i represent the layer

electrons, plasma electrons, and plasma ions, respectively. Within the

context of the electrostatic approximation (~ x~~0). the equation

of motion and the continuity equation for each fluid component (je ’,e,i)

can be expressed as

(~~~

-

~~ 

+ = 

e
.( + 

V .x~ 0
(~)

) 
(4)

(5)

where ~(t)~ —V~(~ ,t) Is the electric field , n~(~~t) is the density , Z~
(
~~t)

Is the mean velocity, and ej and mj 
are the charge and mass, respectively,

of a particle of species j .  In Eq. (4 ) ,  the elect ros ta t ic  analysis is

consistent to the low beta approximation .

To include the influence of layer ion dynamics on s tabi l i ty behavior ,

we adopt a fully kinetic model in which the ion layer distribution

function fb(~
,
~~
,t) evolves accordiag to the Vlasov equation

+ V }_ + 
~~

_ (_v~ + 
~ x B

O 6~)

) 
. f

b(~~
,
~~
,t )O . (6)



_ V

In E qs. (4 ) — ( 6 ) ,  the electrostatic potential ~~~~~~~~ is dete rmined sel f—

c o n s i s t e n t ly f rom Poisson ’s equation

v2~=_ 4v{eJd
3p 

~b 
+ ~ e .n.(~ ,t)j . (7)

j =e’,e , i~

Equat ions ( 4 ) — ( 7 )  cons t i tu te  a closed descriptio n of the system and form

the theoretical basis for the subsequent analysis.

B. Equilibrium Properties

For azimuthally symmetric equilibrium profiles characterized by

n~(r) and V~(x)=V?0 (r)~0
, j=e’,e,i, it is s t ra ightforward to show from Eq. (5)

that the functional form of the electron layer and background plasma density

profiles n~ (r) can be specified arbitrarily. Moreover, from equilibrium

charge neutrality , the equilibrium radial electric field vanishes, i.e.,

It follows from Eq. (4) that equilibrium force balance

in the radial direction can be expressed as

w .)=O (8)
3 3 Li C]

where r .=sgne~ , and ta.(r)=V~0
(r)/r and 0

cj~~
BO/mj

c are the angular velocity

and cyclotron frequency , respectively. In obtaining Eq. (8), we have

approximated ~0(~)~’B~~ consistent with Eq.  ( 2 ) .  In general we note

from Eq. (8) that there are two allowed equilibrium values of w.(r). Throughout

the subsequent analysis we assume that  the layer electrons and background

plasma components are rotating in the slow rotational mode with

j e ’, e , i . (9)

For the layer ions, any distribution function f~ (x,v) that is a function

only of the single—particle constants of the motion in the equilibrium

fields Is a solution to the steady—state (a/~ t=O) ion Vlasov equation.

For present purpose , we assume an ion l ayer equ i l i b r ium described by
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8

t~~(H ,P ,P
0
) = 

~~~~~~~~~~ 
6{H — VzPz 

— T~ 
(V~ _V

2
)J6(p e

_p
o

) ,  (10)

where V and V
0 are constants, is the layer density at the equilibrium

radius r=R 0, H is the total  energy ,

• H = 
~~~~~~~~ (p 2+p~+p

2) , (11)

P
8 

is the canonical angular momentum ,

p
0 

= rfp 0 
+ -

~~~~~ 
w .r + ~~~ A~ (r)J , (12)

and P is the axial canonical momentum ,z

P z 
= Pz 

+ 
~ 
A:(r) . (13)

Here , A (r) and A8 (r) are the 0— and z—components of vector potential for

the axial and azimuthal self magnetic fields . Without loss of generality,

we assume that the vector potentials  A~~(r)  and AS (r)  vanish at r=R 0.

In Eqs . ( l l ) — ( l 3 ) , lower case ~=m .v denotes mechanical momentum .

For the choice of ion distribution function in Eq. (10), the equilibrium

vector potentials are to be calculated se l f—cons is ten t ly f rom the stead y—

state Maxwell equations . The 0— and z—components of the ~ x~~~(~~) Maxwell

equation can be expressed as

~ l~~ s 4lT e 0 0
~~

— —
~~~~

— rA0
(r)  = — n.D

(r )V (r)

= - ~~. J d~p v f~ (H,P ,P )

(14)

l a  ~ s 4~ e O  0— — r — A (r)  = — — n ( r )V  (r)r a r  ar z c b z

= — 

~~~~~~~ J d3p v
2 f~~(H ,P ,P

0
)

where the local ion layer density n~(r) is defined by 

—• --- ~~~~~~~~~~~~~~~ ~ , - -‘- . - — --—~~~~~~~~~~~~~~~~ - : ‘-— ~~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

n~ (r)=Jd
3
p f~(H,P ,P8) . (15)

Here, v
0
=p
0
/m 1, v = p /m1, and V~(r) and V

0(r) are the mean azimuthal

and axial velocities of an ion layer f l u i d  element.

S u b s t i t u t i n g  Eq.  (10) into Eq.  (15) and represent ing Jd
3p=211

J 
d p0 f d p , p~~,

where p~ =p~ +(p
z

_m
iV z ) 2 , we f ind  that the ion layer densi ty p ro f i l e  is given

by

0, r<R
1

n~(r) = 

~~~~~ 
R1

<r< R2 , (16)

0, R
2
<r<R

where R
1 and R2 

are the extremes of the interval on which the inequality

~p(r)>0 (17)

is satisfied . [That is, R1 and R 2 are determined from

In Eq. (17), the envelope function ~~r) is defined by

p (r) = -
~~~~~ V~ — ~~~~~~~~ [—2. — -

~~~~
- w .r — -

~~ A~ (r)J + V A S (r)  . (18)

It is evident from Eqs. (10) and (18) that

m.
H - V P  -~~~~(V

2-v2)zz  2 0 z

= -a-- [p 2+(p —m .V ) 2]--i~(r)

for  P~=P0. That is, i~(r) is the (r—z) kinetic energy of a layer ion

in a frame of reference moving with axial velocity V .

Thus far, R
0 has been introduced in the analysis as an unspecified

constant parameter in Eq. (10). Without loss of generality, we now choose

I ~~~~~~~~~
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to correspond to tha t  radius where q ( r )  passes throug h a maximum in the

interval R
1
<r<R2, i. e . ,

f-s--- ~~~ = 0 . (19)

Subs t i t u t ing  Eq. (18) in to  Eq.  ( 19) ,  and making use of

we ob t a in

w~+{o 1
+[eB~~ (R

0
)/ m .cJ}w0

-V eB~ 0
(R
0
)/m .cR

0
=0 , (20)

where w 9=V~~(R 0)/ R 0 is the angular velocity of an ion layer f lu id  element at

r=R0. Solving Eq. (20) for w~ gives w0 u~ , wher e

~~~ci 
(21)

corresponding to a fas t  rotational equilibrIum with

1 2
P
0 

= - -
~~ m .R0w ~<O . (22)

Similarly,

(23)

correspond ing to a slow rotational equilibrium with

• 1 2
P
0 

-
~~ m1

R
0
ui~~ >O . (24)

In obtaining Eqs. (2 1) and (23) , use has been made of Eq.  (2) , whIch implies

weak self f ie lds  with B~I ,  B51<< B
0
. Note  tha t  there are two classes of

equilibria [Eqs . (21)—(24)], namely, a fast rotational equilibrium with

P0<0, and a slow rota t ional  equi l ibr ium wi th  P 0
> O .

A closed ana ly t ic  determinat ion of R 1 and R 2 f rom the zeros of Eq. (18)

is not generally t rac table  except fo r  a thin layer [Eq. (lfl. We now spec— 

- • . • • - - - • • •- • --‘.. • . • • • • • • ••-- -•- ~~~~~• - 
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ialize to the case of a th in  P—laye r  w i t h  (R 2 — R 1) / R 0<< l  and Tay lor expand

Eq. (18) about r=R0, i.e.,

- —  m .w (r-R1 [V~—(P0/m 1
R0

—w R /2)
2
] 

1 2 
0
)
2+... (25)= — m . c i 0  2 i r2 i

where

2 1 ~~~~ ~~2 ~~
2
8
2 (26)C

r m . 2 ) ci b
i or /

r=R
0

13—15is the radial betatron frequency—squared of a layer ion. In Eq. (26)

2 2
wb=4

~
iT e nb /m ic is the ion plasma frequency—squared , and 82 is defined by

2 0
B =V O

2(RO)/c
2
+V~/c

2
=(PO/m iRO

c_w
ci

RO
/2c)2+V2/c

2
. It is important to

recognize that  the term W~ B 2 in Eq. (26) is directly related to the s e l f —

field gradients at r=R0. In particular , making use of Eq. (14), it  is

straightforward to show that can be expressed as

2 2  2 c2 1/aB \ 21
W
bB 

= C i  1(
02 /1 s

C
b
B
O 

~\~
r ) r ar 

J r=R0

Defining the half thickness of the P—layer by

2 1/2 (27)a=[V
~
_ (P

0/mjR0-
~
w
~ i

R0/ 2) 1 /C r

and subs t i t u t i ng  Eq.  (25) into Eq.  (17) ,  we readi l y f ind  R1=R 0—a and R2=

R
0+a , where a is def ined in Eq . (27) . Finally , we evaluate the angular

veloci ty w 0 
[Eq .  (23) ] for  a slow r o t a t i o n a l  equil ibrium . Making use of

Eq. (14) to e l iminate  B~ 0 (R
0

) ,  we o b t a i n  from Eq. (23)

— 2w v ~ (V /R u ) , (28)
8 ci z 0 ci

where v=Nbe
2/m.c

2 is Budker ’s parameter defined in Eq. (2), and N
b
=47Tn

bRO
a

is the number of layer ions per unit axial length. 
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For a thin layer , the ion density profile in Eq. (16) can be approximated

by

“b’ I r— R oI < a
n~ (r)= (29)

0 , I r—R 0 1> a
Assuming a space—charge neutralized layer , the layer electron density profile

• n~ (r) is identical to Eq. (29). Moreover , the background plasma has a

uniform density profile with

n? r)=np , O<r<R
c, (30)

where n is constant. We now investigate electrostat ic  s tabi l i ty  properties

for  perturbations about the plasma—layer equilibrium characterized by

Eqs. (9), (10), (25), (29), and (30).

- —~~~~- - - ~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~ - - — - -  •- - •~~~~~~ . - •-—~~~~ ~~~~~~~—• •~~ —— ~ — -— — - - —  — -
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• I I I .  ELECTROSTATIC STABILITY PROPERTIES

A. Eigenvalue Equation

In this section , we linearize Eqs. (4)—(7) assuming electrostatic

perturbation about the equilibrium described by Eqs. (9), (10), (25), (29),

and (30). The present analysis assumes flute perturbations with a/az=0,

so that all perturbations have spatial dependence only on the perpendicular

var iable ~~,=(r,8). In the electrostatic approximation , the perturbed

electric field is óE(x,t)=—V ,ô~~(,~,t), and Eqs. (4)—(7) can be linearized

to give

0

• }
~ 

5n~ + ~ }j: 
(rn

~
6V

j~~
) + ~~ ~5V~ 0 O ,

• 
~~~~~ ~~~ - c~w .6V~0 

= - , (31)

~~ ~V~8 
+ L

J
C~~~~V . = -

for the layer electrons and plasma electrons and ions ( j= e’, e , i) ,  and

VXB (~)
{fi

_ 
+ . + e[~

0
~~ + ~~~

0 ] •

• (32)

a o
=e[V ,5c~(~~ ,t)J 

. 
~~~

for  the layer ions (j=b). In obtaining Eq. (31), we have approximated

• ~0(~)=B0,~ consistent  with Eq. (2). The linearized Poisson equation is

(-
~~ 

-h r -
~~~~~ + -

~~~~~ ~
) ó~ = _4

~1(eId
3I)6fb+~) 1

e~óm~) ~ (33)

where use has been made of Eq. (9). In Eqs. (3l)— (33), .(~~~ , t) and

cSn~(~~~t) are the perturbed fluid velocity and density, b
(
~~
,
~~
,t) is

the perturbed ion layer distribution function , and ~0(~) =— (a4~°/ar)~~=0

is the equilibrium radial electric field .

• • I - -- - -• —
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To simplify the right—hand side of Eq. (32), use is made of ap 6/a~=

re
0 
and au /a~=~—V~~~, where U=H_V 5P~ . Here 

1 6  
and are unit vectors in

the 0 and z directions , respectively. We express perturbed quantities as

o~ (~~,t)=~~(r)exp{i(ie—wt)}, Imu> 0, (34)

in Eq.  (32) , and integrate  from t ’=~ .cc to t ’=t , using the method of

characteristics. In Eq. (34), u is the comp lex eigenfrequency, and £ is

the azimuthal harmonic number. Neglecting initial perturbations,

• and noting that afb
°/aU and af~/aP 0 

are constant (independent of t ’) along

particle trajectories in the equilibrium field configuration, the perturbed

ion distribution function can be expressed as -

f b~~
(r ,

~~
) = e -

~j~ 
$~
(r) + ie(w ~-j~

— + i -W-)I (35)

where the orbit integral I is defined by

0

I=J dT •~ (r’)exp [-i~r+if (0
’-e)] . (36)

Here r t ’—t , and the particle trajectories ~~‘(t ’) and ~~‘( t ’) satisfy

d~ ’/dt ’=~ ’ and ~~~~~~~~~~~~~~~~~~~~~ with “initial” conditions

and

The evaluation of the orbit integral in Eq. (36) is generally complicated .

However, for present purposes, we consider low—frequency perturbations

satisfying

2 2I w — tw 0l W

(37)

where a is the half—thickness of the layer defined in Eq. (27). Within

the context of Eq. (37), It is valid to approximate
15 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~P w0 a3
~1

(r ’)=3
2

(R
0
) ~~~~~

r 0 
(38)

p~ P
= 

~~ + - —
~

-) T

in Eq. (36). In Eq. (38). ~1’0
=P

0
—P0, and

2 —
i

(39)

2 2 2 2  2
1•J=Cc/Wr

_l=_W
bB Iu

where C is the radial betatron frequency defined in Eq. (26), ( )

refers to fast and slow rotational equilibria , and is the angular

veloci ty  of an ion layer f lu id  element at r=R 0 [w
0=w~~

_w
~ 1 for  a fas t

rotation d equilibrium, and w vu . ( V  JR w ) 2 
for  a slow rotational0 0 ci z O c i

e q u i l i b r i u m. (~. f . , Eqs. (2 1) and ( 2 8 ) ] .  S u b s t i t u t i n g  Eq. (38) into

Eq. (36) , and approximat ing (v
0 / r )~ ~ 

u~ —u 0 (r —R 0) /R 0, Eq. (35) can
0 O ~~~

be expr essed as

Lw0 (r—R 0)
= e ~~~ {~~

(r)_~~(R0) 
- 
(0 9w

0
)R
0 ~ o~)

(40)

— 
niP 

1
(( 

~~~~~~~~~~ R0 e~) 
— \~ r 1r~R0 

-

W.! further assunc hat. the ion layer d e n s i t y  sa t i s f i es

n <n (4flb1~ p

L 

which w iM assure the validity o f  Eq. (37) in the subsequent analysis.

To simplif y notation , we also introduce the dielectric function

~f the ~~u-k grour i .1 p1asm~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _  •~~_
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2 2
C C

f \ 1  pe 
— 

p

2 2 2 2
C - C  C - C .ce ci

2 2
C U

1 + -

w i~~~ . 2 2
ce ci u — u .

where use has been made of Eq. (37), and w
2 4~e

2
n m m . is the background

ion p lasma f r e q u e n c y — s q u a r e d .  S u b s t i t u t in g  Eqs .  (34)  and (40) into

Eqs. (31)—(33), and making use of Eqs. (37) and (42), it is straight-

forward to express the eigenvalue equation as

~~ rc(.~)~~ ~(r)J 
- 

•~
2 

~(w)~~(r)  = _ _ _ _  —
~~~~~~ [~ (r-~ )-ó(r-R )1r 3r ~r r2 r C C .  2 1

R Lw r—R ‘
~ 
(
~~(r—R )

÷ —9- -~ ~[4(r)—~ (R
0

)}  — 

(C— Lw ) —
~~~

---
~~~ 4(R0)~ ~ r 

1

C 0 0r (4 3)
S (r—R ) 

~ 2 
uL
2
3 R 0

)

÷ r 
2 

-~~~ + C
b T • [ (R 2 —r ) ( r — R

1) J  2 23 R
0
(w—Lw

0)

~~O f ~~~ _ _ _

2~~ 3rJ (w—Zw )
R u  R 0
O r  0

where w
~
=47re2nb

/m .
~ ~~

r)E3Q (r)~ and •(x) is the Heaviside step function

defined by

1 , x>~) -

(44)
0 , x<0 .

In obtaining Eq. (43) , we have neglected the addi t ional  electron layer contribu-

tion , _C
~e

t (r)/[w
2_w

~e
t (r)J. to the dielectric function € (w )  on the le f t—hand

side of Eq. (43). For the low frequencies considered here~ the corresponding

term is of order (mb/mp)(metii) smaller than the plasma ion contribution to ~
(w) .

It  should be noted t h a t  the terms in Eq. (43) proportional to cS (r — R 1
)

and S (r—R2) correspond to surface—charge perturbations on the inner and

outer boundaries of the P—layer. These terms have a decisive influence on

s t a b i l i t y  behavior when w~ /w
2
1

> > l .  We f u r t h e r  note that the f ina l  term
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on the ri ght—hand side of Eq.  (43) is p r o p o r t i o n al  to • [( R 2 — r) ( r—R 1) ]  and

corresponds to a body—charge perturbation. The general form of Eq. (43)

is similar to the eigenvalue equation obtained by Davidson et al. 15 for  a

nonrelativistic E—layer , and similar techniques can be used to determine

the complex eigenfrequency w.

B. Dispersion Relation

We now investigate the s t ab i l i ty  proper ties predicted by Eq. (43).

Since the surface terms in Eq.  (43) are nonzero only at the boundaries

of the P—layer , the per turbed po ten tial at all other rad ial points sa tisfies

0 , O<r<R
1

~~ r ~~~~~~~~~ 

Lw
~
Ro ~~~~~~~~~ Rl<r<R2 ,

0 , R2<r<R

(45)

where R
1
R
0
—a and R

2
=R
0
+a are the boundaries of the P—layer . For L>2,

the physically acceptable solution to Eq. (45) is

An L , 0<r<R 1

~ -L w~ / t  r pQ~~ (R
0
) 

Lw
O
R
O
(3
~
/3r)

R
= Br +cr — 

2 R  
— 

2 
— 

2 
, R~ <r< R~ ,

L —l 0 (11 — Q 1
0) C

r
(C_ Lw

0
)

L —9. • 1Dr +Er , R2
<r<R

where A , B , C , D , and E are constants .  For L=l , the solution to Eq. (45)

can be expressed as

A ’r , 0<r < R1

-1 1 r 
p( R

0
) ORO(3~

/
~
r)R

q~(r)  = B ’ r+C ’r + 
— 

— 

2 
— 

, R 1<r < R 2 ,
0 (w w 0

) C

D’r+E’r 1 , R
2~

r<R 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where A ’, B ’, C ’, D’, and E ’ are constants. Since Eq. (43) is

similar in general form to  Eq. (88) of Ref. 15 , we briefl y outline

the derivation of the dispersion relation . (The detailed procedure

is similar to Ref. IS.]

We introduce the abbreviated nota t ion

2R0 t%
S
1

(w) —

Wb 
9~w 0

S (w) — —--—— — •

2 2 (w—Qw ~)C r  p
r
2

S (w) = , (46)3 ci

2

2 2
9. —l (w—9.w

0
)

2
1 

_________

2
9. 1 C ( w 9.C

0
)

Three constraints relating the constants A , B, C, D, and E (or A ’,

B ’ , C ’ , D ’ , and E ’) are obtained from the boundary condition

and b y enforcing continui ty of 3(n )  at r=R 1 and n R 2 .

The remaining two constraints are obtained by integrating Eq. (43)

across the layer boundaries at n=R1 and at r=R2. 
After some tedious

algebra , we ob tain the dispersion relation

~49.
2gf

+2Q(S
1
+S3)+2L(s1

_S
3) (~) + (2 L g

f+S
1
+S

3
) ( S

l
_S

3){l (

~~~

)

2L J}
x( 1+N 1+N 2)+ (2 9 .gf +S1+S 3) ( x 1-A 3) (~) - (29.+S1-S 3) (~2+x 4 ) (~)

/ R
2’
\ R R

+(S
1
—S

3
)(x

2
—x 4) 

~~l
\
) 

— [29.(gf—l)+(S1+S3)(x1+x3)} (__ .~.p)



: 9 .

+29.N2 (~)[(~
) (l—9.-S

1+S3)(S1
-S2)+(1~~) 

(l_9.+29.E
f+Sl

+S3)(Sl
+S2)]=O~

(47 )

for L>2. In Eq. (47), Xj
(W) is defined by

= ~~~ (l—L—S 1
+S

3
)N
1
—(S

1
+S

2
)( l+N

2)

R

x 2 (C) = ~~~~ (l—Z+2 9.g
f
+S
1
+S

3
)N
1

+(S
1
—S
2
)(1+N

2
)

(48)
R
1x 3(u) j— (l—L— S1

+S3)+S 1+S2 9.N2

R

x4 (w) = -j
~

- (l—9.+29.gf+S1
+S

3)—S1
+S2 9.N2

and the geometric factor g
f is defined by

gf
=El— (R

2
/ R ) I . (4 9)

Equation (47) is the desired dispersion relation for 9.>2. Keep in mind

that 9.<< R0/a has been assumed in deriving Eq. (47) [see Eq.  (37) 1.

Substituting R
1

R
0
—a and R2 R

0
+a , and Taylor expanding the left—hand

side of Eq. (47)~, for a<<R0, we f ind that the d ispersion relation can

be approximated by

2 2

r 1x 2
~r 2 ~~~~

- x+r 3 = 0 , (50)

where

(51)

is the normalized Doppler—shifted elgenfrequency , F . is defined by

_ 
~•:_ 

_



F
1
(gf,w)=gf 

+ 

2~~~ 

+ 

20

CC CC 0

2 2 2

r
2

(g f , C)= (2 + ~~~~~~[9.~~ f l + 

~~~ 
.j - 

C
b , (52)

\ cw~~j  ci 2rw
2 4 2 2 4

r
3(C)=P

(

l 
~~~~~~~~~~~~~~~~~~~~~~~~

and (+) refers to fast and slow rotational equilibria , in obtaining

Eq. (50) , use has been made of the definitions in Eqs. (39), (46), and

(48) .

The preceding analysis pertains to 1>2. A similar procedure can be

followed to obtain the dispersion relation for 9.=l. After some algebraic

manipulation, it is straightforward to show in the thin—layer approximation

that the dispersion relation in Eq. (50) is also valid for 11. In this

context, Eq. (50) is the desired dispersion relation, which determines

the electrostatic stability properties for 1<~Z<<R0/a. 

_ _ .- ---~~-- • _ - -~ - _ ——_ -_._ _ --••--•---•- ~ _ —- —-- - _ - — -  ——
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IV. STABILITY ANALYSIS

We now investigate the stability properties predicted by Eqs . (50)—

(52). The stability analysis for a slow rotational equilibrium

proceeds in the following manner. Since the angular velocity of an ion

layer f luid element for  a slow rotat ional  equil ibrium is much less

than the ion cyclo tron frequency , i.e.,

— 2w =vw .(V /R w .) <<C
0 ci z O c i  ci

• it is readily shown from Eq. (42) that the background plasma d ielectric

function can be approximated by

c(9.w)
~
l+(l+w

i/w )(C
2/w 2

j)> O  . (53)

Substituting Eq. (53) into Eq. (52), yields the inequalities

r1(gf,9.C~)>o , F
3Uw8

)<O ,

Within the context of Eqs. (50), (53), and (54) , it is straightforward

to show that the system is stable for a slow rotational equilibrium.

The stability analysis for a fast rotational P—layer is generally

more complicated . We therefore restrict the analysis to

2
>> 2 

, (55)
p ci

Making use of n~~n,1, in Eq. (41), it is straightforward to show that

2 2  2w
b
r
2/9.rl

r
3cC iI<l.

In this context, the dispersion relation can be approximated by

2

F
1
x2+F

3 ~~~~ -~~ = 0 , (56)
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where the term proportional to x has been neglected . Moreover ,

making use of the inequal ity in Eq. (37) the dielectric function in

Eq. (42) can be approximated by

2 —l
~~~2 \ (x —2x) , 1=1

c(C)~~ — (  —
~-— ) (57)

\ C ci/ [x
2
—22.x+(i

2
—l) 1

1
, 2.>2

+where

A general numerical analysis of Eqs . (56) and (57) is summarized

later in this section. However, for  eigenfrequenc ies satisf ying

j w+Lw .
~~~

<< u , 

- (58)
ci ci

Eq. (57) c-an be further simplified to give

2 — (2x)
’4 

, 1=1

(59)
ci (12 1)

_l , 9.>2

and the solution to Eq. (56) is analytically tractable. Defining

y (9.
2_l)(n

b
/n )(C i

/C
r
)
2

(60)

2 2  2 2 2 2
q ( C ~~

_w
f

) /C
f

w~~0 /W c~~

Eq. (56) can be expressed as

(l-y)x
2 
+ f~ 

- (~) )y[(q+1)y2_ (~ q+l)y+q)0 , (61)

for 9>2 . Here, q is a measure of the strength of the self—field

gradients at r=R0. [See expression for u~ B
2 

following Eq. (26).]

In obtaining Eq. (61), use has been made of Eqs . (1), (26), (39),

(49), and (59). Note from Eq. (60) that y is positive for 9.>2.

_ _
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A parallel analysis for 9.=l results in a dispersion relation with

stable solutions in the parameter regime of physical interest. We

therefore restrict discussion to mode numbers 9.>2.

We note from E q. (61) that (q+1)y2— (3q/2+l)y+q>q/2 for y>l.

Therefore, the necessary and sufficient conditions for instability can

be expressed as

y<l , (62)

and

(l÷ q)y 2 _(-~- q+1)y+q>0 , (63)

for 1>2 and I w+&w .~~~
<< ~ .. It is straightforward to show that  Eq.— ci ci

(63) is automatically sat isf ied for

q=C~ 0
2/w~~.>2(2

3
~
’2
—1)/7=o . 52. (64)

For the case q>O .52 , the necessary and sufficient condition for

instability is given by y<l in Eq. (62). It should be noted from Eqs.

(62) and (63) that the stability criteria are independent of the location

of the conducting wall. Moreover , the system is stable when the self

field is negligibly small, i.e., q<<1 . Finally , we note that the maximum

growth rate occurs at the resonant value

(n~/n ).r(l+q)/(2.2_l) , (65)

corresponding to y=l. ‘

Removing the restriction in Eq. (58), the dispersion relation in

Eq. (56) has been solved numerically by substituting Eq. (57) into

Eq. (56). Figure 2 shows a plot of the normalized growth rate

versus 
~b
’
~ p 

for 9.=2, a/R
0
=O.05, R0

/R =O.5 , and several values

Ii

-~~~~~~-— ~~~~~~ _-_  __ _
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of q. Several points are noteworthy in Fig . 2. First , the i n s t a b i l i t y

growth rate is considerably increased when the strength of the self

magnetic field (as measured by q) is increased . For example, the

maximum growth rate (w .) =0.114 w . for q 0.5 occurs at n /n =0.63,i n  ci b p

while the maximum growth rate (w i) =0.25 w
1 

for q=2 occurs at n
b
/n=

0.65. We also note that the value of n
b/n corresponding to maximum

growth increases as the self magnetic field is increased [see also

Eq. (65)]. Second , the maximum growth rate can be a substantial

fract ion of the ion cyclotron frequency w . . Third, even for weak

self—field effects (q<l) , the range of 
~b
’
~ p 

corresponding to instabili ty

is considerably ex tended beyond the range of n
b
/n predicted by Eq. (62).

For example, for q=0.5, Eq. (62) predicts that instability occurs only

for 
%1np~05. On the other hand , from Fig. 2, we note that the

system is unstable for values of n
b/n up to mb/mP

=l
~
.6. However, the

absolute maximum growth rate does occur very near to the resonant value

of n.1,In ( fo r  example , n
b

/n =0.5, for q=0.5) [Eq. (65)1. Fourth , the growth

rate curve has more than one maximum for q< 0 .52 , which is predicted by

Eq. (63). [See the curves corresponding to q 0.25 and q=0.5 in Fi1~. 2.]

We also emphasize that the range of 
~b’~p 

corresponding to instability

is rapidly reduced when the azimuthal harmonic number 9. is increased.

Of considerable interes t for exper imental application is t~ie

stability behavior for specified values of 
%

/n~ . q. and R0
/R.

Typical results are shown in Fig . 3 where 1mw/C
1 

is plotted versus

mode number 9. for n.D/n =O.l , a/R0=O.05, R0/R =O.5 , and several values of q.

From Fig. 3, we note that the number of unstable modes increases as

the self—field strength (as measured by q) is increased . For example,

for q=2, the mode numbers from 9 . 2  to 9 . 7  are unstable. On the other

hand , for q=O.25 , only the 9.=4 mode is unstable .  Moreover , the maximum

~

- -- --

~

. ----

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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growth rate is increased by in creasing the val ue of q.

We conclude this se ction by emphas izing that the growth rate

exhibits a sensitive dependence on the location of the — -~‘~duc ting

wall.. This is il lustrated in Fig. 4 where the normalized growth rate

Imw/w ., and the normalized Dopple r—shi f ted  real f requency  Re ( w+9.w . ) / w .

are p lot ted versus R
0
/R for 1 3 , 

~~~~ 
=0.2, a/R0

=O.05, and several

val ues of q. Evidently, the growth rates as well as the Doppler shifted

real frequencies are substantially reduced whenever the conducting wall

is located suffic iently close to the P—layer.

L ~~~~~ . ~~~~~~
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V. CONCLUSIONS

In this paper , we have investigated the electrostatic stability

properties of a rotating P—layer immersed in a uniform background

plasma. The equilibrium and stability analysis (Secs. II—IV)

was carried out within the framework of a hybrid (Vlasov—fluid) model

in which the layer ions are described by the Vlasov equat ion, and the

layer electrons and background plasma electrons and ions are described

as a macroscopic , cold fluid. Moreover, electrostatic stability

properties were calculated for the choice of equilibrium ion distribution

function in Eq. (10). Although a slow rotational equilibri um 
~~o

>°
~

is stable [see discussion following Eq. (54)), it is found [Sec. IV]

that a high—density fas t  rotational equilibrium (P0<O) is unstable for

a broad range of physical parameters. One of the most important

conclusions of this study is that the background plasma has a large

influence on stability behavior . In particular , the instabili ty growth

rate is significantly reduced for sufficiently low background plasma

density. Finally , we conclude that the growth rate increases with

increasing self—magnetic field (as measured by q). Moreover , the

characteristic growth rate for 1>2 is a substantial fraction of the ion

cyclotron frequency. The fundamental mode (1=1), however , is found to

be stable.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

• Fig. 2 Plots of normalized growth rate Imw/C
~1

versus nb/nP 
obtained from

Eq. (56) for 1=2, a/R0
=0.05, R0/R =0.5, and several values of q.

Fig. 3 Plots of normalized growth rate Imw/Ccj versus I obtained from

Eq. (56) for 
%/fl~=0.~~ a/ R

0
=0.05, R0/R =0.5, and several values

of q.

Fig. 4 Plots of (a) normalized growth rate 1mw/w
i
, and (b) normalized

real frequency Re(w+9.w 1)/w~~ versus R
0
/R obtained from Eq. (56)

for 1=3, nb/n =0.2, a/R0 0.05, and several values of q. 
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